
Python Anti-Patterns

The Little Book of Python Anti-Patterns and Worst Practice

QuantifiedCode

i

Contents

Why did we write this? 1

Who are we? 1

How is this book organized? 2

References 2

Licensing 2

Contributing 2

List of Maintainers 3

Index Of Patterns 3
1 Correctness . 4

1.1 Accessing a protected member from outside the class 4
1.2 Assigning a lambda expression to a variable . 4
1.3 Assigning to built-in function . 5
1.4 Bad except clauses order . 6
1.5 Bad first argument given to super() . 7
1.6 else clause on loop without a break statement . 9
1.7 __exit__ must accept 3 arguments: type, value, traceback 10
1.8 Explicit return in __init__ . 12
1.9 __future__ import is not the first non-docstring statement 13
1.10 Implementing Java-style getters and setters . 14
1.11 Indentation contains mixed spaces and tabs . 15
1.12 Indentation contains tabs . 16
1.13 Method could be a function . 17
1.14 Method has no argument . 18
1.15 Missing argument to super() . 20
1.16 Using a mutable default value as an argument . 21
1.17 No exception type(s) specified . 22
1.18 Not using defaultdict() . 24
1.19 Not using else where appropriate in a loop . 25
1.20 Not using explicit unpacking . 26
1.21 Not using get() to return a default value from a dict 27
1.22 Not using setdefault() to initialize a dictionary 28

2 Maintainability . 29
2.1 using wildcard imports (from . . . import *) . 29
2.2 Not using with to open files . 30
2.3 Returning more than one variable type from function call 31
2.4 Using the global statement . 32
2.5 Using single letter to name your variables . 33
2.6 Dynamically creating variable/method/function names 34

3 Readability . 36
3.1 Asking for permission instead of forgiveness . 36
3.2 Comparing things to None the wrong way . 37
3.3 Comparing things to True the wrong way . 37
3.4 Using type() to compare types . 39
3.5 Not using dict comprehensions . 40
3.6 Not using dict keys when formatting strings . 41

ii

3.7 Not using items() to iterate over a dictionary . 42
3.8 Not using named tuples when returning more than one value from a function 44
3.9 Not using unpacking for updating multiple values at once 44
3.10 Not using zip() to iterate over a pair of lists . 45
3.11 Putting type information in a variable name . 46
3.12 Test for object identity should be is . 47
3.13 Using an unpythonic loop . 47
3.14 Using map() or filter() where list comprehension is possible 48
3.15 Using CamelCase in function names . 49

4 Security . 50
4.1 use of exec . 50

5 Performance . 51
5.1 Using key in list to check if key is contained in list 51
5.2 Not using iteritems() to iterate over a large dictionary in Python 2 51

6 Django . 53
6.1 Maintainability . 53
6.2 Security . 54
6.3 Correctness . 56
6.4 Performance . 57
6.5 Migration to 1.8 . 59

iii

Python Anti-Patterns

Welcome, fellow Pythoneer! This is a small book of Python anti-patterns and worst practices.

Learning about these anti-patterns will help you to avoid them in your own code and make you a better
programmer (hopefully). Each pattern comes with a small description, examples and possible solutions.
You can check many of them for free against your project at QuantifiedCode.

You can also download this book as a PDF.

Why did we write this?
Short answer: We think that you can learn as much from reading bad code as you can from reading good
one.

Long answer: There is an overwhelming amount of Python books that show you how to do things by
focusing on best practices and examples of good code. There are only very few books out there that show
you how not to do things. We wanted to change that by providing you with an anti-book that teaches you
things which you should never do in practice.

Who are we?
We’re QuantifiedCode, a Berlin-based startup. Our mission is to help programmers write better code! Our
first product is an online tool for automated, data-driven code review. When building this tool we learned
a lot about code quality in Python and decided to compile our knowledge into this book.

1

https://www.quantifiedcode.com/
https://www.quantifiedcode.com/
https://www.quantifiedcode.com/

Python Anti-Patterns

How is this book organized?
This book contains anti- and migrations pattern for Python and for popular Python frameworks, such as
Django. We categorized the patterns as follows:

• Correctness: Anti-patterns that will literally break your code or make it do the wrong things.

• Maintainability: Anti-patterns that will make your code hard to maintain or extend.

• Readability: Anti-patterns that will make your code hard to read or understand.

• Performance: Anti-patterns that will unnecessarily slow your code down.

• Security: Anti-patterns that will pose a security risk to your program.

• Migration: Patterns that help you migrate faster to new versions of a framework

Some patterns can belong in more than one category, so please don’t take the choice that we’ve made too
serious. If you think a pattern is grossly misplaced in its category, feel free to create an issue on Github.

References
Whenever we cite content from another source we tried including the link to the original article on the
bottom of the page. If you should have missed one, please feel free to add it and make a pull request on
Github. Thanks!

Licensing
This document is licensed under a creative-commons NC license, so you can use the text freely for non-
commercial purposes and adapt it to your needs. The only thing we ask in return is the inclusion of a link
to this page on the top of your website, so that your readers will be able to find the content in its original
form and possibly even contribute to it.

Contributing
If you think this collection can be improved or extended, please contribute! You can do this by simply
forking our Github project and sending us a pull request once you’re done adding your changes. We will
review and merge all pull requests as fast as possible and be happy to include your name on the list of
authors of this document.

We would also like to thank all contributors to this book for their effort. A full list of contributors can be
found at Github.

2

https://github.com/quantifiedcode/python-anti-patterns/issues
https://github.com/quantifiedcode/python-anti-patterns/graphs/contributors

Python Anti-Patterns

List of Maintainers
If you have any questions concerning this project, please contact one of the maintainers:

• Andreas Dewes

• Christoph Neumann

Index Of Patterns
Here’s the full index of all anti-patterns in this book.

3

https://github.com/adewes
https://github.com/programmdesign

Python Anti-Patterns

1 Correctness

1.1 Accessing a protected member from outside the class

Accessing a protected member (a member prefixed with _) of a class from outside that class usually calls
for trouble, since the creator of that class did not intend this member to be exposed.

1.1.1 Anti-pattern

class Rectangle(object):
def __init__(self, width, height):

self._width = width
self._height = height

r = Rectangle(5, 6)
direct access of protected member
print("Width: {:d}".format(r._width))

1.1.2 Best practice

If you are absolutely sure that you need to access the protected member from the outside, do the following:

• Make sure that accessing the member from outside the class does not cause any inadvertent side
effects.

• Refactor it such that it becomes part of the public interface of the class.

1.1.3 References

• PyLint - W0212, protected-access

1.2 Assigning a lambda expression to a variable

The sole advantage that a lambda expression has over a def is that the lambda can be anonymously
embedded within a larger expression. If you are going to assign a name to a lambda, you are better off just
defining it as a def.

From the PEP 8 Style Guide:

Yes:

def f(x): return 2*x

No:

f = lambda x: 2*x

The first form means that the name of the resulting function object is specifically ‘f’ instead of the generic
‘<lambda>’. This is more useful for tracebacks and string representations in general. The use of the assign-
ment statement eliminates the sole benefit a lambda expression can offer over an explicit def statement (i.e.
that it can be embedded inside a larger expression)

4 1. Correctness

Python Anti-Patterns

1.2.1 Anti-pattern

The following code assigns a lambda function which returns the double of its input to a variable. This is
functionally identical to creating a def.

f = lambda x: 2 * x

1.2.2 Best practice

Use a def for named expressions

Refactor the lambda expression into a named def expression.

def f(x): return 2 * x

1.2.3 References

• PEP 8 Style Guide - Programming Recommendations

• Stack Overflow - Do not assign a lambda expression

1.3 Assigning to built-in function

Python has a number of built-in functions that are always accessible in the interpreter. Unless you have a
special reason, you should neither overwrite these functions nor assign a value to a variable that has the
same name as a built-in function. Overwriting a built-in might have undesired side effects or can cause
runtime errors. Python developers usually use built-ins ‘as-is’. If their behaviour is changed, it can be very
tricky to trace back the actual error.

1.3.1 Anti-pattern

In the code below, the list built-in is overwritten. This makes it impossible, to use list to define a
variable as a list. As this is a very concise example, it is easy to spot what the problem is. However, if
there are hundreds of lines between the assignment to list and the assignment to cars, it might become
difficult to identify the problem.

Overwriting built-in 'list' by assigning values to a variable called 'list'
list = [1, 2, 3]
Defining a list 'cars', will now raise an error
cars = list()
Error: TypeError: 'list' object is not callable

1. Correctness 5

http://legacy.python.org/dev/peps/pep-0008/#programming-recommendations
http://stackoverflow.com/questions/25010167/e731-do-not-assign-a-lambda-expression-use-a-def

Python Anti-Patterns

1.3.2 Best practice

Unless you have a very specific reason to use variable names that have the same name as built-in functions,
it is recommended to use a variable name that does not interfere with built-in function names.

Numbers used as variable name instead of 'list'
numbers = [1, 2, 3]
Defining 'cars' as list, will work just fine
cars = list()

1.3.3 References

• Python Documentation: Built-in functions

1.4 Bad except clauses order

When an exception occurs, Python will search for the first exception clause which matches the exception
type that occurred. It doesn’t need to be an exact match. If the exception clause represents a base class of the
raised exception, then Python considers that exception clause to be a match. E.g. if a ZeroDivisionError
exception is raised and the first exception clause is Exception, then the Exception clause will execute
because ZeroDivisionError is a sub class of Exception. Therefore, more specific exception clauses
of sub classes should always be placed before the exception clauses of their base classes to ensure that
exception handling is as specific and as helpful as possible.

1.4.1 Anti-pattern

The code below performs a division operation that results in a ZeroDivisionError. The code contains
an except clause for this type of error, which would be really useful because it pinpoints the exact cause
of the problem. However, the ZeroDivisionError exception clause is unreachable because there is a
Exception exception clause placed before it. When Python experiences an exception, it will linearly test
each exception clause and execute the first clause that matches the raised exception. The match does not
need to be identical. So long as the raised exception is a sub class of the exception listed in the exception
clause, then Python will execute that clause and will skip all other clauses. This defeats the purpose of
exception clauses, which is to identify and handle exceptions with as much precision as possible.

try:
5 / 0

except Exception as e:
print("Exception")

unreachable code!
except ZeroDivisionError as e:

print("ZeroDivisionError")

6 1. Correctness

https://docs.python.org/2/library/functions.html

Python Anti-Patterns

1.4.2 Best practice

Move sub class exception clause before its ancestor’s clause

The modified code below places the ZeroDivisionError exception clause in front of the Exception
exception clause. Now when the exception is triggered the ZeroDivisionError exception clause will
execute, which is much more optimal because it is more specific.

try:
5 / 0

except ZeroDivisionError as e:
print("ZeroDivisionError")

except Exception as e:
print("Exception")

1.4.3 References

• Pylint - E0701, bad-except-order

1.5 Bad first argument given to super()

super() enables you to access the methods and members of a parent class without referring to the parent
class by name. For a single inheritance situation the first argument to super() should be the name of the
current child class calling super(), and the second argument should be self (that is, a reference to the
current object calling super()).

Note: This anti-pattern only applies to Python versions 2.x, see “Super in Python 3” at the bottom of the
page for the correct way of calling super() in Python 3.x.

1.5.1 Anti-pattern

Python raises a TypeError when it attempts to execute the call to super() below. The first argument
should be the name of the child class that is calling super(). The author of the code mistakenly provided
self as the first argument.

class Rectangle(object):
def __init__(self, width, height):

self.width = width
self.height = height
self.area = width * height

class Square(Rectangle):
def __init__(self, length):

bad first argument to super()
super(self, Square).__init__(length, length)

s = Square(5)
print(s.area) # does not execute

1. Correctness 7

Python Anti-Patterns

1.5.2 Best practice

Insert name of child class as first argument to super()

In the modified code below the author has fixed the call to super() so that the name of the child class
which is calling super() (Square in this case) is the first argument to the method.

class Rectangle(object):
def __init__(self, width, height):

self.width = width
self.height = height
self.area = width * height

class Square(Rectangle):
def __init__(self, length):

super() executes fine now
super(Square, self).__init__(length, length)

s = Square(5)
print(s.area) # 25

1.5.3 Super in Python 3

Python 3 adds a new simpler super(), which requires no arguments. The correct way to call super() in
Python 3 code is as follows.

class Rectangle(object):
def __init__(self, width, height):

self.width = width
self.height = height
self.area = width * height

class Square(Rectangle):
def __init__(self, length):

This is equivalent to super(Square, self).__init__(length, length)
super().__init__(length, length)

s = Square(5)
print(s.area) # 25

1.5.4 References

• Python Standard Library - super([type[, object-or-type]])

• Stack Overflow - What is a basic example of single inheritance using super()?

• Stack Overflow - Python super() inheritance and arguments needed

• PyLint - E1003, bad-super-call

• PEP 3135 - New Super

8 1. Correctness

https://docs.python.org/3.1/library/functions.html#super
http://stackoverflow.com/questions/1173992/what-is-a-basic-example-of-single-inheritance-using-the-super-keyword-in-pytho
http://stackoverflow.com/questions/15896265/python-super-inheritance-and-arguments-needed
https://www.python.org/dev/peps/pep-3135/

Python Anti-Patterns

1.6 else clause on loop without a break statement

The else clause of a loop is executed when the loop sequence is empty. When a loop specifies no break
statement, the else clause will always execute, because the loop sequence will eventually always become
empty. Sometimes this is the intended behavior, in which case you can ignore this error. But most times
this is not the intended behavior, and you should therefore review the code in question.

1.6.1 Anti-pattern

The code below demonstrates some potential unintended behavior that can result when a loop contains
an else statement yet never specifies a break statement. contains_magic_number() iterates through
a list of numbers and compares each number to the magic number. If the magic number is found then
the function prints The list contains the magic number. If it doesn’t then the function prints
This list does NOT contain the magic number. When the code calls the function with a list of
range(10) and a magic number of 5, you would expect the code to only print The list contains the
magic number. However, the code also prints This list does NOT contain the magic number.
This is because the range(10) list eventually becomes empty, which prompts Python to execute the else
clause.

def contains_magic_number(numbers, magic_number):
for i in numbers:

if i == magic_number:
print("This list contains the magic number")

else:
print("This list does NOT contain the magic number")

contains_magic_number(range(10), 5)
This list contains the magic number.
This list does NOT contain the magic number.

1.6.2 Best practices

Insert a break statement into the loop

If the else clause should not always execute at the end of a loop clause, then the code should add a break
statement within the loop block.

def contains_magic_number(numbers, magic_number):
for i in numbers:

if i == magic_number:
print("This list contains the magic number.")
added break statement here
break

else:
print("This list does NOT contain the magic number.")

contains_magic_number(range(10), 5)
This list contains the magic number.

1. Correctness 9

Python Anti-Patterns

1.6.3 References

• PyLint - W0120, useless-else-on-loop

• Python Standard Library - else Clauses on Loops

1.7 __exit__ must accept 3 arguments: type, value, traceback

A contextmanager class is any class that implements the __enter__ and __exit__ methods according
to the Python Language Reference’s context management protocol. Implementing the context management
protocol enables you to use the with statement with instances of the class. The with statement is used to
ensure that setup and teardown operations are always executed before and after a given block of code. It is
functionally equivalent to try...finally blocks, except that with statements are more concise.

For example, the following block of code using a with statement. . .

with EXPRESSION:
BLOCK

. . . is equivalent to the following block of code using try and finally statements.

EXPRESSION.__enter__()
try:

BLOCK
finally:

EXPRESSION.__exit__(exception_type, exception_value, traceback)

In order for __exit__ to work properly it must have exactly three arguments: exception_type,
exception_value, and traceback. The formal argument names in the method definition do not need
to correspond directly to these names, but they must appear in this order. If any exceptions occur while at-
tempting to execute the block of code nested after the with statement, Python will pass information about
the exception into the __exit__ method. You can then modify the definition of __exit__ to gracefully
handle each type of exception.

1.7.1 Anti-pattern

The __exit__ method defined in the Rectangle class below does not conform to Python’s context
management protocol. The method is supposed to take four arguments: self, exception type, ex-
ception value, and traceback. Because the method signature does not match what Python expects,
__exit__ is never called even though it should have been, because the method divide_by_zero cre-
ates a ZeroDivisionError exception.

class Rectangle:
def __init__(self, width, height):

self.width = width
self.height = height

def __enter__(self):
print("in __enter__")
return self

def __exit__(self):
never called because
argument signature is wrong
print("in __exit__")

def divide_by_zero(self):
causes ZeroDivisionError exception

(continues on next page)

10 1. Correctness

https://docs.python.org/2/tutorial/controlflow.html#break-and-continue-statements-and-else-clauses-on-loops
https://docs.python.org/2/reference/datamodel.html#with-statement-context-managers

Python Anti-Patterns

(continued from previous page)

return self.width / 0

with Rectangle(3, 4) as r:
r.divide_by_zero()
__exit__ should be called but isn't

Output:
"in __enter__"
Traceback (most recent call last):
File "e0235.py", line 27, in <module>
r.divide_by_zero()
TypeError: __exit__() takes exactly 1 argument (4 given)

1.7.2 Best practices

Modifying __exit__ to accept four arguments ensures that __exit__ is properly called when an excep-
tion is raised in the indented block of code following the with statement. Note that the argument names
do not have to exactly match the names provided below. But they must occur in the order provided below.

class Rectangle:
def __init__(self, width, height):

self.width = width
self.height = height

def __enter__(self):
print("in __enter__")
return self

def __exit__(self, exception_type, exception_value, traceback):
print("in __exit__")

def divide_by_zero(self):
causes ZeroDivisionError exception
return self.width / 0

with Rectangle(3, 4) as r:
exception successfully pass to __exit__
r.divide_by_zero()

Output:
"in __enter__"
"in __exit__"
Traceback (most recent call last):
File "e0235.py", line 27, in <module>
r.divide_by_zero()

1.7.3 References

• PyLint - E0235,unexpected-special-method-signature

• Python Language Reference - The with statement

• Python Language Reference - With Statement Context Managers

• Stack Overflow - Python with. . . as

1. Correctness 11

https://docs.python.org/2/reference/compound_stmts.html#with
https://docs.python.org/2/reference/datamodel.html#with-statement-context-managers
http://stackoverflow.com/a/14776885/1669860

Python Anti-Patterns

1.8 Explicit return in __init__

__init__ is a special Python method that is automatically called when memory is allocated for a new
object. The sole purpose of __init__ is to initialize the values of instance members for the new object.
Using __init__ to return a value implies that a program is using __init__ to do something other than
initialize the object. This logic should be moved to another instance method and called by the program
later, after initialization.

1.8.1 Anti-pattern

The __init__ method of the Rectangle class below attempts to return the area of the rectangle within
the __init__ method. This violates the rule of only using __init__ to initialize instance members.

class Rectangle:
def __init__(self, width, height):

self.width = width
self.height = height
self.area = width * height
causes "Explicit return in __init__" error
return self.area

1.8.2 Best practices

Remove the return statement from the __init__ method

Remove the return statement in the __init__ method that is returning a value.

class Rectangle:
def __init__(self, width, height):

self.width = width
self.height = height
self.area = width * height
return statement removed from here

Move the program logic to another instance method

There is no reason why the Rectangle class MUST return the area immediately upon initialization. This
program logic should be moved to a separate method of the Rectangle class. The program can call the
method later, after the object has successfully initialized.

class Rectangle(object):
def __init__(self, width, height):

self.width = width
self.height = height
self._area = width * height

@property
moved the logic for returning area to a separate method
def area(self):

return self._area

Note that the class must inherit from object now, since the property decorator only works for new style
classes.

12 1. Correctness

https://docs.python.org/2/reference/datamodel.html#special-method-names

Python Anti-Patterns

1.8.3 References

• PyLint - E0101, return-in-init

• Python Language Reference - object.__init__(self[, . . .])

1.9 __future__ import is not the first non-docstring statement

The __future__ module enables a module to use functionality that is mandatory in future Python ver-
sions. If it was possible to place the __future__ module in the middle of a module, then that would mean
that one half of the module could use the old Python functionality for a given feature, and the other half
(after the __future__ import) could use the new Python functionality of the feature. This could create
many strange and hard-to-find bugs, so Python does not allow it.

1.9.1 Anti-pattern

The code below attempts to place a __future__ import statement in the middle of the module. When
Python encounters the from __future__ import division statement it raises a SyntaxError and
halts execution. However, if the code were to execute, the first print statement would print out 1 (which
is how the division operator behaves in Python versions 2 and below), but the second print statement
would print out a decimal value, which is how the division operator functions in Python versions 3 and
later. As you can see, this could create very strange behavior, so Python does not allow __future__ import
statements in the middle of a module. The module can use either version of the division operator, but it
can’t use both.

print(8 / 7) # 1

SyntaxError
from __future__ import division

1.1428571428571428
print(8 / 7)

1.9.2 Best practice

Remove __future__ import

In the modified code below, the author decides that the module needs to use the old functionality of the
division operator. The only solution in this case is to remove the __future__ import statement from the
module.

removed __future__ import statement
print(8 / 7) # 1

Place __future__ import before all other statements

In the modified code below, the author decides that the module needs the new functionality of the division
operator. The only solution then is to place the __future__ import statement at the beginning of the
module

1. Correctness 13

https://docs.python.org/2/reference/datamodel.html#object.__init__

Python Anti-Patterns

from __future__ import division

1.1428571428571428
print(8 / 7)

1.9.3 References

• PyLint - W0410, misplaced-future

• Simeon Visser - How does ‘from __future__ import . . . ’ work?

• Python Standard Library - __future__

1.10 Implementing Java-style getters and setters

Python is not Java. If you need to set or get the members of a class or object, just expose the member publicly
and access it directly. If you need to perform some computations before getting or setting the member, then
use Python’s built-in property decorator.

1.10.1 Anti-pattern

The programmer below comes to Python from a long career as a Java programmer. For every class member
that he wants to expose publicly, he defines a get and set method for that member. This is common
practice in Java, but is frowned upon in Python as a waste of time and a cause of unnecessary code.

class Square(object):
def __init__(self, length):

self._length = length
Java-style
def get_length(self):

return self._length
Java-style
def set_length(self, length):

self._length = length

r = Square(5)
r.get_length()
r.set_length(6)

1.10.2 Best practice

Access the members directly

In Python it is acceptable to simply access class or object members directly. The modified code below
exposes the length member as a public member. This is signified by the fact that there is no underscore
character at the beginning of the member name. The get_length() and set_length() methods are no
longer necessary so they have been deleted.

class Square(object):
def __init__(self, length):

self.length = length

(continues on next page)

14 1. Correctness

http://simeonvisser.com/posts/how-does-from-future-import-work-in-python.html
https://docs.python.org/2/library/__future__.html

Python Anti-Patterns

(continued from previous page)

r = Square(5)
r.length
r.length = 6

Use built-in property decorator

When a member needs to be slightly protected and cannot be simply exposed as a public member, use
Python’s property decorator to accomplish the functionality of getters and setters.

class Square(object):
def __init__(self, length):

self._length = length

@property
def length(self):

return self._length

@length.setter
def length(self, value):

self._length = value

@length.deleter
def length(self):

del self._length

r = Square(5)
r.length # automatically calls getter
r.length = 6 # automatically calls setter

1.10.3 References

• Python Built-in Functions - property

• dirtSimple - Python Is Not Java

• Stack Overflow - What’s the Pythonic Way to use getters and setters?

1.11 Indentation contains mixed spaces and tabs

Per the PEP 8 Style Guide, all Python code should be consistently indented with 4 spaces, never tabs.

1.11.1 Anti-pattern

The following code mixes spaces and tabs for indentation. The print("Hello, World!") statement is
indented with a tab. The print("Goodybye, World!") statement is indented with 4 spaces.

def print_hello_world():
indented with tab

print("Hello, World!")
def print_goodbye_world():

indented with 4 spaces
print("Goodbye, World!")

1. Correctness 15

https://docs.python.org/2/library/functions.html#property
http://dirtsimple.org/2004/12/python-is-not-java.html
http://stackoverflow.com/questions/2627002/whats-the-pythonic-way-to-use-getters-and-setters

Python Anti-Patterns

1.11.2 Solutions

Consistently indent with spaces

All Python code should be consistently indented with 4 spaces.

def print_hello_world():
print("Hello, World!") # indented with 4 spaces

def print_goodbye_world():
print("Goodbye, World!") # indented with 4 spaces

1.11.3 References

• PEP 8 Style Guide - Tabs or Spaces?

• PEP 8 Style Guide - Indentation

1.12 Indentation contains tabs

Per the PEP 8 Style Guide, all Python code should be consistently indented with 4 spaces for each level of
indentation, not tabs.

1.12.1 Anti-pattern

The following code uses tabs for indentation. Python code should be indented with four spaces for each
level of indentation.

def print_hello_world():
indented with tab
print("Hello, World!")

def print_goodbye_world():
indented with tab
print("Goodbye, World!")

1.12.2 Best practice

Consistently indent with spaces

All Python code should be consistently indented with 4 spaces.

def print_hello_world():
indented with 4 spaces
print("Hello, World!")

def print_goodbye_world():
indented with 4 spaces
print("Goodbye, World!")

16 1. Correctness

http://legacy.python.org/dev/peps/pep-0008/#tabs-or-spaces
http://legacy.python.org/dev/peps/pep-0008/#indentation

Python Anti-Patterns

1.12.3 References

• PEP 8 Style Guide - Tabs or Spaces?

• PEP 8 Style Guide - Indentation

1.13 Method could be a function

When a method is not preceded by the @staticmethod or @classmethod decorators and does not con-
tain any references to the class or instance (via keywords like cls or self), Python raises the Method
could be a function error. This is not a critical error, but you should check the code in question in
order to determine if this section of code really needs to be defined as a method of this class.

1.13.1 Anti-pattern

In the Rectangle class below the area method calculates the area of any rectangle given a width and a
height.

class Rectangle:
def __init__(self, width, height):

self.width = width
self.height = height
self.area = width * height

should be preceded by @staticmethod here
def area(width, height):

return width * height

area causes the Method could be a function error because it is ambiguous. It does not reference the
instance or class using the self or cls keywords and it is not preceded by the @staticmethod decorator.

Class method is not preceded by @classmethod decorator

In the Rectangle class below the print_class_name method prints the name of the class. Again,
Python raises the Method could be a function error because the method does not reference any class
members or methods and is not preceded by the @classmethod decorator.

Furthermore, the first argument of a class method must be a reference to the class itself.

class Rectangle:
def __init__(self, width, height):

self.width = width
self.height = height
self.area = width * height

should be preceded by @classmethod here
missing required first argument "cls"
def print_class_name():

print("class name: Rectangle")

1. Correctness 17

http://legacy.python.org/dev/peps/pep-0008/#tabs-or-spaces
http://legacy.python.org/dev/peps/pep-0008/#indentation

Python Anti-Patterns

1.13.2 Best practices

Add the @staticmethod decorator before the static method

All static methods must be preceded by the @staticmethod decorator.

class Rectangle:
clarifies that this is a static method and belongs here
@staticmethod
def area(width, height):

return width * height

Add the @classmethod decorator before the class method

All class methods must be preceded by the @classmethod decorator. Furthermore, the first argument of
any class method must be cls, which is a reference to the class itself.

class Rectangle:
@classmethod
def print_class_name(cls):

"class name: Rectangle"
print("class name: {0}".format(cls))

1.13.3 References

• PyLint - R0201, no-self-use

1.14 Method has no argument

Unlike some programming languages, Python does not pass references to instance or class objects auto-
matically behind the scenes. So the program must explicitly pass them as arguments whenever it wants to
access any members of the instance or class within a method.

1.14.1 Anti-pattern

In the Rectangle class below the area method attempts to return the value of the area instance variable.
However, self.area is undefined because a reference to the instance object has not been explicitly passed
as an argument to the method.

class Rectangle:
def __init__(self, width, height):

self.width = width
self.height = height
self.area = width * height

missing first argument "self"
def area():

self is undefined here
return self.area

18 1. Correctness

Python Anti-Patterns

Class method is missing the cls keyword

The method print_class_name attempts to print the name of the class. However, to programmatically
access a class name, a method needs to have a reference to the class object. This is accomplished by passing
the keyword cls as the first argument to the method. Because print_class_name does not do this, its
reference to cls in the body of the method is undefined.

class Rectangle:
@classmethod
missing first argument "cls"
def print_class_name():

cls is undefined here
print("Hello, I am {0}!".format(cls))

The method area computes the value of any rectangle. Currently this method is ambiguous. It is defined
as a method of the Rectangle class, yet it does not reference any instance or class members. The method
needs to explicitly state that it is a static method via the @staticmethod decorator.

class Rectangle:
"@staticmethod" should be here
def area(width, height):

return width * height

1.14.2 Best practices

Add the self parameter to instance methods

To access the area member of a Rectangle instance the first argument of the area method needs to be a
reference to the instance object, signified by the keyword self.

class Rectangle:
def __init__(self, width, height):

self.width = width
self.height = height
self.area = width * height

instance members now accessible because of "self"
def area(self):

return self.area

Add the cls parameter to class methods

To access the name of the class the print_class_name method needs to explicitly pass an argument to
the class object. This is done by adding the keyword cls as the first argument of the method.

class Rectangle:
@classmethod
class members now accessible, thanks to "cls"
def print_class_name(cls):

print("Hello, I am {0}!".format(cls))

Add the @staticmethod decorator to static methods

If the method is a static method that does not need access to any instance members, then the method
should be preceded by the @staticmethod decorator. This improves readability by helping clarify that

1. Correctness 19

Python Anti-Patterns

the method should never rely on any instance members.

class Rectangle:
clarifies that the method does not need any instance members
@staticmethod
def area(width, height):

return width * height

1.14.3 References

• PyLint - E0211, no-method-argument

1.15 Missing argument to super()

super() enables you to access the methods and members of a parent class without referring to the parent
class by name. For a single inheritance situation the first argument to super() should be the name of the
current child class calling super(), and the second argument should be self, that is, a reference to the
current object calling super().

Note: This error is only raised for Python versions 2.x which don’t support new-style classes.

1.15.1 Anti-pattern

The author of the code below provides no arguments for the child class’ call to super(). Python raises a
TypeError at runtime because it expects at least 1 argument for super().

class Rectangle(object):
def __init__(self, width, height):

self.width = width
self.height = height
self.area = width * height

class Square(Rectangle):
def __init__(self, length):

no arguments provided to super()
super().__init__(length, length)

s = Square(5)
print(s.area) # does not execute

1.15.2 Best practice

Insert name of child class as first argument to super()

In the modified code below the author has fixed the call to super() so that the name of the child class
which is calling super() (Square in this case) is the first argument to the method, and a reference to the
object calling super() is the second argument.

20 1. Correctness

Python Anti-Patterns

class Rectangle(object):
def __init__(self, width, height):

self.width = width
self.height = height
self.area = width * height

class Square(Rectangle):
def __init__(self, length):

super() executes fine now
super(Square, self).__init__(length, length)

s = Square(5)
print(s.area) # 25

1.15.3 References

• PyLint - E1004, missing-super-argument

• Python Standard Library - super([type[, object-or-type]])

• Stack Overflow - What is a basic example of single inheritance using super()?

• Stack Overflow - Python super() inheritance and arguments needed

1.16 Using a mutable default value as an argument

Passing mutable lists or dictionaries as default arguments to a function can have unforeseen consequences.
Usually when a programmer uses a list or dictionary as the default argument to a function, the programmer
wants the program to create a new list or dictionary every time that the function is called. However, this
is not what Python does. The first time that the function is called, Python creates a persistent object for the
list or dictionary. Every subsequent time the function is called, Python uses that same persistent object that
was created from the first call to the function.

1.16.1 Anti-pattern

A programmer wrote the append function below under the assumption that the append function would
return a new list every time that the function is called without the second argument. In reality this is not
what happens. The first time that the function is called, Python creates a persistent list. Every subsequent
call to append appends the value to that original list.

def append(number, number_list=[]):
number_list.append(number)
print(number_list)
return number_list

append(5) # expecting: [5], actual: [5]
append(7) # expecting: [7], actual: [5, 7]
append(2) # expecting: [2], actual: [5, 7, 2]

1. Correctness 21

https://docs.python.org/3.1/library/functions.html#super
http://stackoverflow.com/questions/1173992/what-is-a-basic-example-of-single-inheritance-using-the-super-keyword-in-pytho
http://stackoverflow.com/questions/15896265/python-super-inheritance-and-arguments-needed

Python Anti-Patterns

1.16.2 Best practice

Use a sentinel value to denote an empty list or dictionary

If, like the programmer who implemented the append function above, you want the function to return a
new, empty list every time that the function is called, then you can use a sentinel value to represent this
use case, and then modify the body of the function to support this scenario. When the function receives the
sentinel value, it knows that it is supposed to return a new list.

the keyword None is the sentinel value representing empty list
def append(number, number_list=None):

if number_list is None:
number_list = []

number_list.append(number)
print(number_list)
return number_list

append(5) # expecting: [5], actual: [5]
append(7) # expecting: [7], actual: [7]
append(2) # expecting: [2], actual: [2]

1.16.3 References

• PyLint - W0102, dangerous-default-value

• Stack Overflow - Hidden Features of Python

1.17 No exception type(s) specified

The function divide simply divides a by b. To avoid invalid calculations (e.g., a division by zero), a try-except
block is added. This is valid and ensures that the function always returns a result. However, by securing
your code with the try clause, you might hide actual programming errors, e.g., that you pass a string or an
object as b, instead of a number. By not specifying an exception type, you not only hide this error but you
also lose information about the error itself.

1.17.1 Anti-pattern

def divide(a, b):

try:
result = a / b

except:
result = None

return result

22 1. Correctness

http://en.wikipedia.org/wiki/Sentinel_value
http://stackoverflow.com/questions/101268/hidden-features-of-python#113198

Python Anti-Patterns

1.17.2 Best practice

Handle exceptions with Python’s built in exception types.

def divide(a, b):

result = None

try:
result = a / b

except ZeroDivisionError:
print("Type error: division by 0.")

except TypeError:
E.g., if b is a string
print("Type error: division by '{0}'.".format(b))

except Exception as e:
handle any other exception
print("Error '{0}' occured. Arguments {1}.".format(e.message, e.args))

else:
Excecutes if no exception occured
print("No errors")

finally:
Executes always
if result is None:

result = 0

return result

With this pattern, you are able to handle exceptions based on their actual exception-type. The first exception
type that matches the current error is handled first. Thus, it is recommended to handle specific exception
types first (e.g., ZeroDivisionError) and generic error types (e.g., Exception) towards the end of the try-
except block.

Cleanup actions (optional): The else-clause executes only, if no exception occurred. It is useful to log the
success of your code. The finally-block executes under all circumstances — no matter if an error occured or
not. It is useful to clean up the try-except block.

1.17.3 Implement user defined exceptions

In addition to Python’s standard exceptions, you can implement your own exception classes.

class DivisorTooSmallError(StandardError):
def __init__(self, arg):

self.args = arg

def divide(a, b):
if b < 1:

raise DivisorTooSmallError
return a / b

try:
divide(10, 0)

except DivisorTooSmallError:
print("Unable to divide these numbers!")

1. Correctness 23

https://docs.python.org/2/library/exceptions.html

Python Anti-Patterns

1.17.4 References

• PyLint W0702, bare-except

• Python Built-in Exceptions<https://docs.python.org/2/library/exceptions.html#exceptions.BaseException>

• Python Errors and Exceptions<https://docs.python.org/2/tutorial/errors.html>

1.18 Not using defaultdict()

When a dict is created using defaultdict(), the value for each key in the dict will default to the value
provided as the first argument of defaultdict(). This is more concise and less error-prone than manu-
ally setting the value of each key.

1.18.1 Anti-pattern

The code below defines an empty dict and then manually initializes the keys of the dict. Although there is
nothing wrong with this code, there is a more concise and less error-prone way to achieve the same idea, as
explained in the solution below.

d = {}

if "k" not in d:
d["k"] = 6

d["k"] += 1

print(d["k"]) # 7

1.18.2 Best practice

Use defaultdict() to initialize dict keys

The modified code below uses defaultdict to initialize the dict. Whenever a new key is created, the
default value for that key is 6. This code is functionally equivalent to the previous code, but this one is
more concise and less error-prone, because every key automatically initializes to 6 with no work on the part
of the programmer.

from collections import defaultdict

d = defaultdict(lambda : 6)
d["k"] += 1

print(d["k"]) # 7

24 1. Correctness

Python Anti-Patterns

1.18.3 References

• Python Standard Library - collections.defaultdict

1.19 Not using else where appropriate in a loop

The Python language provides a built-in else clause for for loops. If a for loop completes without being
prematurely interrupted by a break or return statement, then the else clause of the loop is executed.

1.19.1 Anti-pattern

The code below searches a list for a magic number. If the magic number is found in the list, then the code
prints Magic number found. If the magic number is not found, then the code prints Magic number
not found.

The code uses a flag variable called found to keep track of whether or not the magic number was found in
the list.

The logic in this code is valid; it will accomplish its task. But the Python language has built-in language
constructs for handling this exact scenario and which can express the same idea much more concisely and
without the need for flag variables that track the state of the code.

l = [1, 2, 3]
magic_number = 4
found = False

for n in l:
if n == magic_number:

found = True
print("Magic number found")
break

if not found:
print("Magic number not found")

1.19.2 Best practice

Use else clause with for loop

In Python, you can declare an else loop in conjunction with a for loop. If the for loop iterates to com-
pletion without being prematurely interrupted by a break or return statement, then Python executes the
else clause of the loop.

In the modified code below, the for loop will iterate through all three items in the list. Because the magic
number is not contained in the list, the if statement always evaluates to False, and therefore the break
statement is never encountered. Because Python never encounters a break statement while iterating over
the loop, it executes the else clause.

The modified code below is functionally equivalent to the original code above, but this modified code is
more concise than the original code and does not require any flag variables for monitoring the state of the
code.

1. Correctness 25

https://docs.python.org/2/library/collections.html#collections.defaultdict

Python Anti-Patterns

l = [1, 2, 3]
magic_number = 4

for n in l:
if n == magic_number:

print("Magic number found")
break

else:
print("Magic number not found")

Note: Since else on a for loop is so unintuitive and error-prone, even some experienced Python devel-
opers suggest not using this feature at all.

1.19.3 References

• Python Language Reference - else Clauses on Loops

1.20 Not using explicit unpacking

When you see multiple variables being defined followed by an assignment to a list (e.g. elem0, elem1,
elem2 = elems, where elem0, elem1, and elem2 are variables and elems is a list), Python will auto-
matically iterate through the list and assign elems[0] to elem0, elems[1] to elem1, and so on.

1.20.1 Anti-pattern

The code below manually creates multiple variables to access the items in a list. This code is error-prone
and unnecessarily verbose, as well as tedious to write.

elems = [4, 7, 18]

elem0 = elems[0]
elem1 = elems[1]
elem2 = elems[2]

1.20.2 Best practice

Use unpacking

The modified code below is functionally equivalent to the original code, but this code is more concise and
less prone to error.

elems = [4, 7, 18]

elem0, elem1, elem2 = elems

26 1. Correctness

https://docs.python.org/2/tutorial/controlflow.html#break-and-continue-statements-and-else-clauses-on-loops

Python Anti-Patterns

1.21 Not using get() to return a default value from a dict

Frequently you will see code create a variable, assign a default value to the variable, and then check a dict
for a certain key. If the key exists, then the value of the key is copied into the value for the variable. While
there is nothing wrong this, it is more concise to use the built-in method dict.get(key[, default])
from the Python Standard Library. If the key exists in the dict, then the value for that key is returned. If it
does not exist, then the default value specified as the second argument to get() is returned. Note that the
default value defaults to None if a second argument is not provided.

1.21.1 Anti-pattern

The code below initializes a variable called data to an empty string. Then it checks if a certain key called
message exists in a dict called dictionary. If the key exists, then the value of that key is copied into the
data variable.

Although there is nothing wrong with this code, it is verbose and inefficient because it queries the dictionary
twice. The solution below demonstrates how to express the same idea in a more concise manner by using
dict.get(key[, default]).

dictionary = {"message": "Hello, World!"}

data = ""

if "message" in dictionary:
data = dictionary["message"]

print(data) # Hello, World!

1.21.2 Best practice

Use dict.get(key[, default]) to assign default values

The code below is functionally equivalent to the original code above, but this solution is more concise.

When get() is called, Python checks if the specified key exists in the dict. If it does, then get() returns the
value of that key. If the key does not exist, then get() returns the value specified in the second argument
to get().

dictionary = {"message": "Hello, World!"}

data = dictionary.get("message", "")

print(data) # Hello, World!

1. Correctness 27

Python Anti-Patterns

1.21.3 References

• Python Standard Library - dict.get

1.22 Not using setdefault() to initialize a dictionary

When initializing a dictionary, it is common to see a code check for the existence of a key and then create the
key if it does not exist. Although there is nothing wrong with this, the exact same idea can be accomplished
more concisely by using the built-in dictionary method setdefault().

1.22.1 Anti-pattern

The code below checks if a key named list exists in a dictionary called dictionary. If it does not exist,
then the code creates the key and then sets its value to an empty list. The code then proceeds to append a
value to the list.

Although there is nothing wrong with this code, it is unnecessarily verbose. Later you will see how you
can use setdefault() to accomplish the same idea more concisely.

dictionary = {}

if "list" not in dictionary:
dictionary["list"] = []

dictionary["list"].append("list_item")

1.22.2 Best practice

Use setdefault() to initialize a dictionary

The modified code below uses setdefault() to initialize the dictionary. When setdefault() is called,
it will check if the key already exists. If it does exist, then setdefault() does nothing. If the key does not
exist, then setdefault() creates it and sets it to the value specified in the second argument.

dictionary = {}

dictionary.setdefault("list", []).append("list_item")

1.22.3 References

• Stack Overflow - Use cases for the setdefault dict method

28 1. Correctness

https://docs.python.org/2/library/stdtypes.html#dict.get
http://stackoverflow.com/questions/3483520/use-cases-for-the-setdefault-dict-method

Python Anti-Patterns

2 Maintainability

A program is maintainable if it is easy to understand and modify the code even for someone that is unfa-
miliar with the code base.

Avoid the following anti-patterns to increase maintainability and avoid creating spaghetti code.

2.1 using wildcard imports (from . . . import *)

When an import statement in the pattern of from MODULE import * is used it may become difficult for
a Python validator to detect undefined names in the program that imported the module. Furthermore, as a
general best practice, import statements should be as specific as possible and should only import what they
need.

2.1.1 Anti-pattern

The following code imports everything from the math built-in Python module.

wildcard import = bad
from math import *

2.1.2 Best practices

Make the import statement more specific

The import statement should be refactored to be more specific about what functions or variables it is using
from the mathmodule. The modified code below specifies exactly which module member it is using, which
happens to be ceil in this example.

from math import ceil

Import the whole module

There are some cases where making the import statement specific is not a good solution:

• It may be unpractical or cumbersome to create or maintain the list of objects to be imported from a
module

• A direct import would bind to the same name as that of another object (e.g. from asyncio import
TimeoutError)

• The module that the object is imported from would provide valuable contextual information if it is
right next to the object when it’s used.

In these cases, use one of these idioms:

import math
x = math.ceil(y)

or

import multiprocessing as mp
pool = mp.Pool(8)

2. Maintainability 29

Python Anti-Patterns

2.1.3 References

• Stack Overflow - Importing Modules

• Stack Overflow - ‘import module’ or ‘from module import’

2.2 Not using with to open files

In Python 2.5, the file class was equipped with special methods that are automatically called whenever
a file is opened via a with statement (e.g. with open("file.txt", "r") as file). These special
methods ensure that the file is properly and safely opened and closed.

2.2.1 Anti-pattern

The code below does not use with to open a file. This code depends on the programmer remembering to
manually close the file via close() when finished. Even if the programmer remembers to call close()
the code is still dangerous, because if an exception occurs before the call to close() then close() will
not be called and the memory issues can occur, or the file can be corrupted.

f = open("file.txt", "r")
content = f.read()
1 / 0 # ZeroDivisionError
never executes, possible memory issues or file corruption
f.close()

2.2.2 Best practice

Use with to open a file

The modified code below is the safest way to open a file. The file class has some special built-in methods
called __enter__() and __exit__() which are automatically called when the file is opened and closed,
respectively. Python guarantees that these special methods are always called, even if an exception occurs.

with open("file.txt", "r") as f:
content = f.read()
Python still executes f.close() even though an exception occurs
1 / 0

2.2.3 References

effbot - Understanding Python’s with statement

30 2. Maintainability

http://stackoverflow.com/questions/15145159/importing-modules-how-much-is-too-much
http://stackoverflow.com/questions/710551/import-module-or-from-module-import
http://effbot.org/zone/python-with-statement.htm

Python Anti-Patterns

2.3 Returning more than one variable type from function call

If a function that is supposed to return a given type (e.g. list, tuple, dict) suddenly returns something
else (e.g. None) the caller of that function will always need to check the type of the return value before
proceeding. This makes for confusing and complex code. If the function is unable to produce the supposed
return value it is better to raise an exception that can be caught by the caller instead.

2.3.1 Anti-pattern

In the code below, the function get_secret_code() returns a secret code when the code calling the
function provides the correct password. If the password is incorrect, the function returns None. This
leads to hard-to-maintain code, because the caller will have to check the type of the return value before
proceeding.

def get_secret_code(password):
if password != "bicycle":

return None
else:

return "42"

secret_code = get_secret_code("unicycle")

if secret_code is None:
print("Wrong password.")

else:
print("The secret code is {}".format(secret_code))

2.3.2 Best practice

Raise an exception when an error is encountered or a precondition is unsatisfied

When invalid data is provided to a function, a precondition to a function is not satisfied, or an error occurs
during the execution of a function, the function should not return any data. Instead, the function should
raise an exception. In the modified version of get_secret_code() shown below, ValueError is raised
when an incorrect value is given for the password argument.

def get_secret_code(password):
if password != "bicycle":

raise ValueError
else:

return "42"

try:
secret_code = get_secret_code("unicycle")
print("The secret code is {}".format(secret_code))

except ValueError:
print("Wrong password.")

2. Maintainability 31

Python Anti-Patterns

2.4 Using the global statement

Global variables are dangerous because they can be simultaneously accessed from multiple sections of a
program. This frequently results in bugs. Most bugs involving global variables arise from one function
reading and acting on the value of a global variable before another function has the chance to set it to an
appropriate value.

Global variables also make code difficult to read, because they force you to search through multiple func-
tions or even modules just to understand all the different locations where the global variable is used and
modified.

2.4.1 Examples

The code below uses global variables and a function to compute the area and perimeter of a rectangle. As
you can see, even with two functions it becomes difficult to keep track of how the global variables are used
and modified.

WIDTH = 0 # global variable
HEIGHT = 0 # global variable

def area(w, h):
global WIDTH # global statement
global HEIGHT # global statement
WIDTH = w
HEIGHT = h
return WIDTH * HEIGHT

def perimeter(w, h):
global WIDTH # global statement
global HEIGHT # global statement
WIDTH = w
HEIGHT = h
return ((WIDTH * 2) + (HEIGHT * 2))

print("WIDTH:" , WIDTH) # "WIDTH: 0"
print("HEIGHT:" , HEIGHT) # "HEIGHT: 0"

print("area():" , area(3, 4)) # "area(): 12"

print("WIDTH:" , WIDTH) # "WIDTH: 3"
print("HEIGHT:" , HEIGHT) # "HEIGHT: 4"

2.4.2 Solutions

Encapsulate the global variables into objects

One common solution for avoiding global variables is to create a class and store related global variables as
members of an instantiated object of that class. This results in more compact and safer code.

In the modified code below, the author eliminates the need for the global variables WIDTH and HEIGHT by
encapsulating this data into a class called Rectangle.

class Rectangle:
def __init__(self, width, height):

self.width = width

(continues on next page)

32 2. Maintainability

Python Anti-Patterns

(continued from previous page)

self.height = height
def area(self):

return self.width * self.height
def circumference(self):

return ((self.width * 2) + (self.height * 2))

r = Rectangle(3, 4)
print("area():" , r.area())

2.4.3 References

• Cunningham & Cunningham, Inc. - Global Variables Are Bad

• PyLint - W0603, global-statement

2.5 Using single letter to name your variables

Sometimes you see programmers trying to shorten the amount of text needed to write a piece of code, but
when this goes to extremes, it will result in extremely ugly and unreadable code.

2.5.1 Anti-pattern

d = {'data': [{'a': 'b'}, {'b': 'c'}, {'c': 'd'}], 'texts': ['a', 'b', 'c']}

for k, v in d.iteritems():
if k == 'data':

for i in v:
Do you know what are you iterating now?
for k2, v2 in i.iteritems():

print(k2, v2)

2.5.2 Best practice

Use more verbose names for your variables for clarity

It is much better to write more text and to be much more precise about what each variable means.

data_dict = {
'data': [{'a': 'b'}, {'b': 'c'}, {'c': 'd'}],
'texts': ['a', 'b', 'c']

}

for key, value in data_dict.iteritems():
if key == 'data':

for data_item in value:
Do you know what are you iterating now?
for data_key, data_value in data_item.iteritems():

print(data_key, data_value)

2. Maintainability 33

http://c2.com/cgi/wiki?GlobalVariablesAreBad

Python Anti-Patterns

2.6 Dynamically creating variable/method/function names

Sometimes a programmer gets an idea to make his/her work easier by creating magically working code
that uses setattr() and getattr() functions to set some variable. While this may look like a good
idea, because there is no need to write all the methods by hand, you are asking for trouble down the road.

2.6.1 Example

Consider the following code. You have some data and want to update the class with all of the data. Of course
you don’t want to do this by hand, especially if there are tons of items in data_dict. However, when
refactoring this kind of code after several years, and you’d like to know where some variable is added to
this class, you’d usually use grep or ack_grep to find it. But when setting variables/methods/functions
like this, you’re screwed.

data_dict = {'var1': 'Data1', 'var2': 'Data2'}

class MyAwesomeClass:

def __init__(self, data_dict):
for key, value in data_dict.iteritems():

setattr(self, key, value)

While previous example may look easy to find and debug, consider this:

data_list = ['dat1', 'dat2', 'dat3']
data_dict = {'dat1': [1, 2, 3],

'dat2': [4, 5, 6],
'dat3': [7, 8, 9],
'dat4': [0, 4, 6]}

class MyAwesomeClass:

def __init__(self, data_list, data_dict):
counter = 0

for key, value in data_dict.iteritems():
if key in data_list:

setattr(self, key, value)
else:

setattr(self, 'unknown' + str(counter), value)
counter += 1

Now the class contains also unknownX variables indexed by their count. Well, what a nice mess we created
here. Try to find a year later where these variables come from.

34 2. Maintainability

Python Anti-Patterns

2.6.2 Solutions

Find another way

While the approach in the examples above may be the easiest to write, it is the worst to maintain later. You
should always try to find another way to solve your problem.

Typical examples:

• Use function to parse incoming data

• Use the data dict/list itself without class

This however depends on the task at hand.

2. Maintainability 35

Python Anti-Patterns

3 Readability

3.1 Asking for permission instead of forgiveness

The Python community uses an EAFP (easier to ask for forgiveness than permission) coding style. This
coding style assumes that needed variables, files, etc. exist. Any problems are caught as exceptions. This
results in a generally clean and concise style containing a lot of try and except statements.

3.1.1 Anti-pattern

The code below uses an if statement to check if a file exists before attempting to use the file. This is not the
preferred coding style in the Python community. The community prefers to assume that a file exists and
you have access to it, and to catch any problems as exceptions.

import os

violates EAFP coding style
if os.path.exists("file.txt"):

os.unlink("file.txt")

3.1.2 Best practice

Assume the file can be used and catch problems as exceptions

The updated code below is a demonstration of the EAFP coding style, which is the preferred style in the
Python community. Unlike the original code, the modified code below simply assumes that the needed file
exists, and catches any problems as exceptions. For example, if the file does not exist, the problem will be
caught as an OSError exception.

import os

try:
os.unlink("file.txt")

raised when file does not exist
except OSError:

pass

3.1.3 References

• Python 2.7.8 - Glossary

36 3. Readability

https://docs.python.org/2/glossary.html

Python Anti-Patterns

3.2 Comparing things to None the wrong way

Per the PEP 8 Style Guide, the preferred way to compare something to None is the pattern if Cond is
None. This is only a guideline. It can be ignored if needed. But the purpose of the PEP 8 style guidelines is
to improve the readability of code.

3.2.1 Anti-pattern

The statement below uses the equality operator to compare a variable to None. This is not the PEP 8
preferred approach to comparing values to None.

number = None

if number == None:
print("This works, but is not the preferred PEP 8 pattern")

3.2.2 Best practice

Compare values to None using the pattern if cond is None

The code below uses the PEP 8 preferred pattern of if cond is None.

number = None

if number is None:
print("PEP 8 Style Guide prefers this pattern")

Here the identity operator is is used. It will check whether number is identical to None. is will return to
True only if the two variables point to the same object.

3.2.3 References

• PEP 8 Style Guide - Programming Recommendations

• stackoverflow

3.3 Comparing things to True the wrong way

Per the PEP 8 Style Guide, the preferred ways to compare something to True are the patterns if cond is
True: or if cond:. This is only a guideline. It can be ignored if needed. But the purpose of the PEP 8
Style Guide is to improve the readability of code.

3. Readability 37

http://legacy.python.org/dev/peps/pep-0008/#programming-recommendations
http://stackoverflow.com/questions/1504717/why-does-comparing-strings-in-python-using-either-or-is-sometimes-produce

Python Anti-Patterns

3.3.1 Anti-pattern

The statement below uses the equality operator to compare a boolean variable to True. This is not the PEP
8 preferred approach to comparing values to True. For sure, it is an anti-pattern not only in Python but in
almost every programming language.

flag = True

Not PEP 8's preferred pattern
if flag == True:

print("This works, but is not the preferred PEP 8 pattern")

3.3.2 Best practices

Evaluating conditions without comparing to True:

The code below uses the PEP 8 preferred pattern of if condition:. If the type of the condition is
Boolean, it is obvious that comparing to True is redundant. But in Python, every non-empty value is treated
as true in context of condition checking, see Python documentation:

In the context of Boolean operations, and also when expressions are used by control flow state-
ments, the following values are interpreted as false: False, None, numeric zero of all types, and
empty strings and containers (including strings, tuples, lists, dictionaries, sets and frozensets).
All other values are interpreted as true.

flag = True

if flag:
print("PEP 8 Style Guide prefers this pattern")

Compare values to True using the pattern if cond is True:

The code below uses the pattern described in PEP 8 as worse:

flag = True

if flag is True:
print("PEP 8 Style Guide abhors this pattern")

This pattern is useful, when you make actual distinction between True value and every other that could be
treated as true. The same applies to if cond is False. This expression is true only if cond has actual
value of False - not empty list, empty tuple, empty set, zero etc.

3.3.3 References

• PEP 8 Style Guide - Programming Recommendations

38 3. Readability

https://docs.python.org/2/reference/expressions.html#boolean-operations
http://legacy.python.org/dev/peps/pep-0008/#programming-recommendations

Python Anti-Patterns

3.4 Using type() to compare types

The function isinstance is the best-equipped to handle type checking because it supports inheritance
(e.g. an instance of a derived class is an instance of a base class, too). Therefore isinstance should be
used whenever type comparison is required.

3.4.1 Anti-pattern

The if statement below uses the pattern if type(OBJECT) is types.TYPE to compare a Rectangle
object to a built-in type (ListType in this example). This is not the preferred pattern for comparing types.

import types

class Rectangle(object):
def __init__(self, width, height):

self.width = width
self.height = height

r = Rectangle(3, 4)

bad
if type(r) is types.ListType:

print("object r is a list")

Note that the following situation will not raise the error, although it should.

import types

class Rectangle(object):
def __init__(self, width, height):

self.width = width
self.height = height

class Circle(object):
def __init__(self, radius):

self.radius = radius

c = Circle(2)
r = Rectangle(3, 4)

bad
if type(r) is not type(c):

print("object types do not match")

3.4.2 Best practice

Use isinstance to compare types

The preferred pattern for comparing types is the built-in function isinstance.

import types

class Rectangle(object):
def __init__(self, width, height):

self.width = width

(continues on next page)

3. Readability 39

Python Anti-Patterns

(continued from previous page)

self.height = height

r = Rectangle(3, 4)

good
if isinstance(r, types.ListType):

print("object r is a list")

3.4.3 References

• Stack Overflow: Differences between isinstance() and type() in Python

3.5 Not using dict comprehensions

You may encounter the old style of initializing a dict (passing an iterable of key-value pairs) in older Python
code written before version 2.7. The new dict comprehension style is functionally equivalent and is much
more readable. Consider refactoring the old-style code to use the new style (but only if you are using
Python 2.7 or higher).

3.5.1 Anti-pattern

The code below demonstrates the old syntax of dict initialization. Although there is nothing syntactically
wrong with this code, it is somewhat hard to read.

numbers = [1,2,3]

hard to read
my_dict = dict([(number,number*2) for number in numbers])

print(my_dict) # {1: 2, 2: 4, 3: 6}

3.5.2 Best practice

The modified code below uses the new dict comprehension syntax which was introduced in Python 2.7.

numbers = [1, 2, 3]

my_dict = {number: number * 2 for number in numbers}

print(my_dict) # {1: 2, 2: 4, 3: 6}

40 3. Readability

http://stackoverflow.com/questions/1549801/differences-between-isinstance-and-type-in-python

Python Anti-Patterns

3.5.3 References

• Stack Overflow - Create a dictionary with list comprehesion

3.6 Not using dict keys when formatting strings

When formatting a string with values from a dictionary, you can use the dictionary keys instead of explicity
defining all of the format parameters. Consider this dictionary that stores the name and age of a person.

person = {
'first': 'Tobin',
'age': 20

}

3.6.1 Anti-pattern

Here is an example of formatting the string with values from the person. This is bad! If we added another
key-value pair to the person dictionary, we would have to change the string and the format arguments

person = {
'first': 'Tobin',
'age':20

}

print('{0} is {1} years old'.format(
person['first'],
person['age'])

)
Output: Tobin is 20 years old

person = {
'first': 'Tobin',
'last': 'Brown',
'age':20

}

Bad: we have to change the replacement fields within
our string, once we add new values
print('{0} {1} is {2} years old'.format(

person['first'],
person['last'],
person['age'])

) # bad
Output: Tobin Brown is 20 years old

3. Readability 41

http://stackoverflow.com/questions/1747817/python-create-a-dictionary-with-list-comprehension

Python Anti-Patterns

3.6.2 Best practice

By using the dictionary keys in the string we are formatting, the code is much more readable and explicit.

person = {
'first': 'Tobin',
'age':20

}

print('{first} is {age} years old'.format(**person))
Output: Tobin is 20 years old

person = {
'first':'Tobin',
'last': 'Brown',
'age':20

}
print('{first} {last} is {age} years old'.format(**person))
Output: Tobin Brown is 20 years old

Going even further, the same result can be achieved with your own objects by using obj.__dict__.

class Person(object):

def __init__(self, first, last, age):
self.first = first
self.last = last
self.age = age

def __str__(self):
return '{first} {last} is {age} years old'.format(**self.__dict__)

person = Person('Tobin', 'Brown', 20)
print(person)
Output: Tobin Brown is 20 years old

3.7 Not using items() to iterate over a dictionary

PEP 20 states “There should be one– and preferably only one –obvious way to do it.” The preferred way
to iterate over the key-value pairs of a dictionary is to declare two variables in a for loop, and then call
dictionary.items(), where dictionary is the name of your variable representing a dictionary. For
each loop iteration, Python will automatically assign the first variable as the key and the second variable as
the value for that key.

42 3. Readability

http://legacy.python.org/dev/peps/pep-0020/

Python Anti-Patterns

3.7.1 Anti-pattern

The code below defines a for loop that iterates over a dictionary named d. For each loop iteration Python
automatically assigns the value of key to the name of the next key in the dictionary. Inside of the for loop
the code uses key to access the value of each key of the dictionary. This is a common way for iterating over
a dictionary, but it is not the preferred way in Python.

d = {"first_name": "Alfred", "last_name":"Hitchcock"}

for key in d:
print("{} = {}".format(key, d[key]))

3.7.2 Best-practice

Use items() to iterate across dictionary

The updated code below demonstrates the Pythonic style for iterating through a dictionary. When you
define two variables in a for loop in conjunction with a call to items() on a dictionary, Python auto-
matically assigns the first variable as the name of a key in that dictionary, and the second variable as the
corresponding value for that key.

d = {"first_name": "Alfred", "last_name":"Hitchcock"}

for key,val in d.items():
print("{} = {}".format(key, val))

3.7.3 Difference Python 2 and Python 3

In python 2.x the above examples using items would return a list with tuples containing the copied key-
value pairs of the dictionary. In order to not copy and with that load the whole dictionary’s keys and
values inside a list to the memory you should prefer the iteritems method which simply returns an
iterator instead of a list. In Python 3.x the iteritems is removed and the items method returns view
objects. The benefit of these view objects compared to the tuples containing copies is that every change
made to the dictionary is reflected in the view objects.

3.7.4 References

• PEP 20 - The Zen of Python

• Python 2 dict.iteritems

• Python 3 dict.items

3. Readability 43

http://legacy.python.org/dev/peps/pep-0020/
https://docs.python.org/2/library/stdtypes.html#dict.iteritems
https://docs.python.org/3.3/library/stdtypes.html#dict-views

Python Anti-Patterns

3.8 Not using named tuples when returning more than one value from a function

Named tuples can be used anywhere where normal tuples are acceptable, but their values can be accessed
through their names in addition to their indexes. This makes the code more verbose and readable.

3.8.1 Anti-pattern

The code below returns a first name, middle name, and last name using a normal, unnamed tuple. After
calling the tuple, each value can only be returned via an index. This code is difficult to use: the caller of the
function has to know that the first element is the first name, the second is the middle name, and the third is
the last name.

def get_name():
return "Richard", "Xavier", "Jones"

name = get_name()

no idea what these indexes map to!
print(name[0], name[1], name[2])

3.8.2 Best practice

Use named tuples to return multiple values

The modified code below uses named tuples to return multiple values. This code is easier to use and easier
to read, as now the caller can access each piece of data via a straightforward name (like name.first).

from collections import namedtuple

def get_name():
name = namedtuple("name", ["first", "middle", "last"])
return name("Richard", "Xavier", "Jones")

name = get_name()

much easier to read
print(name.first, name.middle, name.last)

3.8.3 References

• Python Standard Libary - collections.namedtuple

3.9 Not using unpacking for updating multiple values at once

In general, the Python programming community prefers concise code over verbose code. Using unpacking
to update the values of multiple variables simultaneously is more concise than using assignments to update
each variable individually.

44 3. Readability

https://docs.python.org/2/library/collections.html#namedtuple-factory-function-for-tuples-with-named-fields

Python Anti-Patterns

3.9.1 Anti-pattern

The function below implements the classical Euclid algorithm for greatest common divisor. The updates of
the variables a and b are made using variable temp and three lines of code.

def gcd(a, b):
while b != 0:

temp = b
b = a % b
a = temp

return a

3.9.2 Best practice

Use unpacking to update multiple values simultaneously

The modified code below is functionally equivalent to the original code above, but this code is more concise.

def gcd(a, b):
while b != 0:

a, b = b, a % b
return a

3.9.3 Gotchas

The unpacking can be sometimes quite misleading. Figure out what is the outcome of the code below.

b = "1984"
a = b, c = "AB"
print(a, b, c)

3.10 Not using zip() to iterate over a pair of lists

PEP 20 states “There should be one– and preferably only one –obvious way to do it.” The preferred way to
iterate through a pair of lists is to declare two variables in a loop expression, and then call zip(list_one,
list_two), where list_one and list_two are the two lists you wish to iterate through. For each loop
iteration, Python will automatically assign the first variable as the next value in the first list, and the second
variable as the next value in the second list.

3.10.1 Anti-pattern

The code below defines a variable index which serves as an index variable for iterating through two lists.
Within the for loop the code accesses the corresponding value for each list by using the index variable. This
is a common way for iterating through two lists, but it is not the preferred way in Python.

numbers = [1, 2, 3]
letters = ["A", "B", "C"]

for index in range(len(numbers)):
print(numbers[index], letters[index])

3. Readability 45

http://legacy.python.org/dev/peps/pep-0020/

Python Anti-Patterns

3.10.2 Best-practice

Use zip() to iterate through a pair of lists

The updated code below demonstrates the Pythonic style for iterating through a pair of lists. When the
code defines two variables in its for loop in conjunction with a call to zip(numbers, letters) on the
pair of lists, Python automatically assigns the first variable as the next value in the first list, and the second
variable as the next value in the second list.

numbers = [1, 2, 3]
letters = ["A", "B", "C"]

for numbers_value, letters_value in zip(numbers, letters):
print(numbers_value, letters_value)

3.10.3 References

• PEP 20 - The Zen of Python

• Built-in Functions > zip(*iterables)

3.11 Putting type information in a variable name

Python is a duck-typed language. Just because a variable is described as an integer does not mean that it
actually is an integer. This can be very dangerous for any programmer who acts on the variable assuming
that it is an integer. Note that the practice of including type notation in variable names is also called
Hungarian Notation.

3.11.1 Anti-pattern

The code below demonstrates the dangers of variables whose names include type notation. Just because a
variable is called n_int does not mean that the variable is actually an integer.

n_int = "Hello, World!"

mistakenly assuming that n_int is a number
4 / n_int

3.11.2 Best practice

Remove type notation

Although the modifed code below does not fix the underlying problem of attempting to divide a number
by a string, the code is generally less misleading, because there is no misleading description in the variable
name n that n is a number.

n = "Hello, World!"

still a problem, but less misleading now
4 / n

46 3. Readability

http://legacy.python.org/dev/peps/pep-0020/
https://docs.python.org/3.4/library/functions.html#zip

Python Anti-Patterns

3.11.3 References

• Stack Overflow - Hungarian Notation

3.12 Test for object identity should be is

Testing the identity of two objects can be achieved in python with a special operator called is. Most
prominently it is used to check whether a variable points to None. But the operator can examine any kind
of identity. This often leads to confusion because equality of two different objects will return False.

3.12.1 Anti-pattern

a = range(10)
b = range(10)

print((a is b))

This code snippet will print False even though a and b have equal values. This can occur because a and
b are references that point to different objects which happen to have the same value. To verify the equality
of two variables the == operator should be used.

3.12.2 Best practice

Only use the is operator if you want to check the exact identity of two references.

some_list = None

if some_list is None:
do_somthing_with_the_list()

3.12.3 References

• PEP8 Style Guide - Programming Recommendations

3.13 Using an unpythonic loop

PEP 20 states “There should be one– and preferably only one –obvious way to do it.” Creating a loop that
uses an incrementing index to access each element of a list within the loop construct is not the preferred
style for accessing each element in a list. The preferred style is to use enumerate() to simultaneously
retrieve the index and list element.

3. Readability 47

http://stackoverflow.com/questions/8791533/does-it-make-sense-to-use-hungarian-notation-prefixes-in-interpreted-languages
http://legacy.python.org/dev/peps/pep-0008/#programming-recommendations
http://legacy.python.org/dev/peps/pep-0020/

Python Anti-Patterns

3.13.1 Anti-pattern

The code below uses an index variable i in a for loop to iterate through the elements of a list. This is not
the preferred style for iterating through a list in Python.

l = [1,2,3]

creating index variable
for i in range(0,len(l)):

using index to access list
le = l[i]
print(i,le)

3.13.2 Best practice

Retrieve index and element when defining loop

The updated code below demonstrates the Pythonic style for iterating through a list. When you define two
variables in a for loop in conjunction with a call to enumerate() on a list, Python automatically assigns
the first variable as an index variable, and the second variable as the corresponding list element value for
that index location in the list.

for i, le in enumerate(l):
print(i, le)

3.13.3 References

• PEP 20 - The Zen of Python

3.14 Using map() or filter() where list comprehension is possible

For simple transformations that can be expressed as a list comprehension, use list comprehensions over
map() or filter(). Use map() or filter() for expressions that are too long or complicated to express
with a list comprehension. Although a map() or filter() expression may be functionally equivalent to
a list comprehension, the list comprehension is generally more concise and easier to read.

3.14.1 Anti-pattern

The code below defines a list, and then uses map() to create a second list which is just the doubles of each
value from the first list.

values = [1, 2, 3]
doubles = map(lambda x: x * 2, values)

48 3. Readability

http://legacy.python.org/dev/peps/pep-0020/

Python Anti-Patterns

3.14.2 Best practice

Use list comprehension instead of map()

In the modified code below, the code uses a list comprehension to generate the second list containing the
doubled values from the first list. Although this is functionally equivalent to the first code, the list compre-
hension is generally agreed to be more concise and easier to read.

values = [1, 2, 3]
doubles = [x * 2 for x in values]

3.14.3 References

• PyLint - W0110, deprecated-lambda

• Oliver Fromme - List Comprehensions

3.15 Using CamelCase in function names

Per the PEP 8 Style Guide, function names should be lowercase, with words separated by underscores.

3.15.1 Anti-pattern

def someFunction():
print("Is not the preferred PEP 8 pattern for function names")

3.15.2 Best practice

Using lowercase with underscores

The code below uses the PEP 8 preferred pattern of function names.

def some_function():
print("PEP 8 Style Guide prefers this pattern")

3.15.3 References

• PEP8 Style Guide - Function names

3. Readability 49

http://www.secnetix.de/olli/Python/list_comprehensions.hawk
https://www.python.org/dev/peps/pep-0008/#function-names

Python Anti-Patterns

4 Security

Python is a highly dynamic language that gives the programmer many ways to change the runtime be-
havior of his code and even dynamically execute new code. This is powerful but can be a security risk as
well.

Use the following patterns to increase the security of your code.

4.1 use of exec

The exec statement enables you to dynamically execute arbitrary Python code which is stored in literal
strings. Building a complex string of Python code and then passing that code to exec results in code that is
hard to read and hard to test. Anytime the Use of exec error is encountered, you should go back to the
code and check if there is a clearer, more direct way to accomplish the task.

4.1.1 Anti-pattern

Program uses exec to execute arbitrary Python code

The sample code below composes a literal string containing Python code and then passes that string to
exec for execution. This is an indirect and confusing way to program in Python.

s = "print(\"Hello, World!\")"
exec s

4.1.2 Best practice

Refactor the code to avoid exec

In most scenarios, you can easily refactor the code to avoid the use of exec. In the example below, the use
of exec has been removed and replaced by a function.

def print_hello_world():
print("Hello, World!")

print_hello_world()

4.1.3 References

• PyLint - W0122, exec-used

• Python Language Reference - The exec statement

• Stack Overflow - Why should exec() and eval() be avoided?

50 4. Security

https://docs.python.org/2/reference/simple_stmts.html#the-exec-statement
http://stackoverflow.com/questions/1933451/why-should-exec-and-eval-be-avoided

Python Anti-Patterns

5 Performance

In Python, large performance gains can be obtained by using appropriate functions and directives. Avoid
the following anti-patterns to reduce overhead and make your code more performant.

5.1 Using key in list to check if key is contained in list

Using key in list to iterate through a list can potentially take n iterations to complete, where n is the
number of items in the list. If possible, you should change the list to a set or dictionary instead, because
Python can search for items in a set or dictionary by attempting to directly accessing them without itera-
tions, which is much more efficient.

5.1.1 Anti-pattern

The code below defines a list l and then calls if 3 in l to check if the number 3 exists in the list. This is
inefficient. Behind the scenes, Python iterates through the list until it finds the number or reaches the end
of the list.

l = [1, 2, 3, 4]

iterates over three elements in the list
if 3 in l:

print("The number 3 is in the list.")
else:

print("The number 3 is NOT in the list.")

5.1.2 Best practice

Use a set or dictionary instead of a list

In the modified code below, the list has been changed to a set. This is much more efficient behind the scenes,
as Python can attempt to directly access the target number in the set, rather than iterate through every item
in the list and compare every item to the target number.

s = set([1, 2, 3, 4])

if 3 in s:
print("The number 3 is in the list.")

else:
print("The number 3 is NOT in the list.")

5.2 Not using iteritems() to iterate over a large dictionary in Python 2

PEP 234 defines iteration interface for objects. It also states it has significant impact on performance of dict
iteration.

Note: This anti-pattern only applies to Python versions 2.x. In Python 3.x items() returns an iterator
(consequently, iteritems() and Python 2’s iterative range() function, xrange(), have been removed
from Python 3.x).

5. Performance 51

https://www.python.org/dev/peps/pep-0234://www.python.org/dev/peps/pep-0234/

Python Anti-Patterns

5.2.1 Anti-pattern

The code below defines one large dictionary (created with dictionary comprehension) that generates large
amounts of data. When using items() method, the iteration needs to be completed and stored in-memory
before for loop can begin iterating. The prefered way is to use iteritems. This uses (~1.6GB).

d = {i: i * 2 for i in xrange(10000000)}

Slow and memory hungry.
for key, value in d.items():

print("{0} = {1}".format(key, value))

5.2.2 Best-practice

Use iteritems() to iterate over large dictionary

The updated code below uses iteritems() instead of items()method. Note how the code is exactly the
same, but memory usage is 50% less (~800MB). This is the preferred way to iterate over large dictionaries.

d = {i: i * 2 for i in xrange(10000000)}

Memory efficient.
for key, value in d.iteritems():

print("{0} = {1}".format(key, value))

5.2.3 References

• PEP 234 Iterators

52 5. Performance

https://www.python.org/dev/peps/pep-0234/

Python Anti-Patterns

6 Django

Django is a great framework to create fast and scalable web applications. To help you write great Django
apps from the start, we started to compile a set of anti- and migration patterns. They’ll help you to avoid
common mistakes or to migrate to a new version faster. Some patterns are simply (more elaborate) explana-
tions of tips and best practices that can be found in Django’s docs. Others stem from our own experiences.
Feel free to contribute your ideas or share your pattern via email.

6.1 Maintainability

Avoid the following anti-patterns to increase maintainability of your Django code base—for you, and for
others.

6.1.1 Importing django.db.models.fields

In Django, models are defined in django.db.models.fields. However, for convenience they are im-
ported into django.db.models. Django’s standard convention is to use from django.db import
models and refer to fields as models<some>Field. To improve readability and maintainability of your
code, change your import statement and model definition.

Anti-pattern

from django.db.models import fields

class Person(models.Model):
first_name = fields.CharField(max_length=30)
last_name = fields.CharField(max_length=30)

Best practice

Stick to standard conventions and use from django.db import models instead.

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)

References

• Django documentation - Model field reference

6. Django 53

mailto:info@quantifiedcode.com?subject=New%20pattern&body=Hey%20fellow%20Pythoneer%2C%0A%0Athanks%20for%20suggesting%20a%20new%20pattern.%20To%20help%20us%20understand%20you%20pattern%2C%20please%20send%20us%20the%20following%20information%3A%0A%0ADescription%3A%20what%20is%20the%20pattern%20all%20about%20and%20why%20is%20it%20a%20problem%3F%0AAnti-pattern%3A%20Code%20snippet%20that%20shows%20the%20problem%0ABest-practice%3A%20Code%20snippet%20that%20shows%20the%20solution%20%2F%20best%20practice%0AReferences%20(optional)%3A%20Links%20to%20further%20readings%0A%0AThanks%2C%20%0AAndreas%20and%20Christoph
https://docs.djangoproject.com/en/1.8/ref/models/fields/#module-django.db.models.fields

Python Anti-Patterns

6.2 Security

Most Django applications contain a lot of proprietory or even confidential information. Hence, it is crucial
to take all possible measures to take your Django application secure and to recude the possibility of being
hacked.

Use the following patterns to increase the security of your code.

6.2.1 ALLOWED_HOSTS setting missing

In Django, you need to properly set the ALLOWED_HOSTS setting when DEBUG = False. This is a security
mechanism. It prevents attackers from poisoning caches or password reset emails with links to malicious
hosts by submitting requests with a fake HTTP Host header, which is possible even under many seemingly-
safe web server configurations.

Anti-Pattern

ALLOWED_HOSTS not set or empty, when DEBUG = False.

""" settings.py """

DEBUG = False
...
ALLOWED_HOSTS = []

Best practice

Make sure, an appropriate host is set in ALLOWED_HOSTS, whenever DEBUG = False.

DEBUG = False
...
ALLOWED_HOSTS = ['djangoproject.com']

References

• Django documentation - Settings: The Basics

• Django documentation - Settings: ALLOWED_HOSTS

6.2.2 SECRET_KEY published

A secret key has to be be kept secret. Make sure it is only used in production, but nowhere else. Especially,
avoid committing it to source control. This increases security and makes it less likely that an attacker may
acquire the key.

Anti-pattern

This settings.py contains a SECRET_KEY. You should not do this!

""" settings.py """
SECRET_KEY = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'

54 6. Django

https://docs.djangoproject.com/en/1.8/topics/settings/#the-basics
https://docs.djangoproject.com/en/1.8/ref/settings/#std:setting-ALLOWED_HOSTS

Python Anti-Patterns

Better Practices

Load key from environment variable

Instead of publishing your secret key, you can use an environment variable to set your secret key.

import os
SECRET_KEY = os.environ['SECRET_KEY']

Load secret key from file

Alternatively, you can read the secret key from a file.

with open('/etc/secret_key.txt') as f:
SECRET_KEY = f.read().strip()

References

• Django

6.2.3 Same value for MEDIA_ROOT and STATIC_ROOT

According to Django’s documentation, MEDIA_ROOT and STATIC_ROOTmust have different values. Before
STATIC_ROOT was introduced, MEDIA_ROOT was also used (as fallback) to also serve static files. As this
can have serious security implications, Django has validation checks to prevent it.

Anti-pattern

MEDIA_ROOT and STATIC_ROOT point to the same folder.

""" settings.py """

Media and static root are identical
STATIC_ROOT = '/path/to/my/static/files'
MEDIA_ROOT = '/path/to/my/static/files'

Best practice

Ensure, STATIC_ROOT and MEDIA_ROOT point to different folders.

""" settings.py """

STATIC_ROOT = '/path/to/my/static/files'
MEDIA_ROOT = '/path/to/my/media/files'

References

• Django documentation - Settings: MEDIA_ROOT

6. Django 55

https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/
https://docs.djangoproject.com/en/1.8/ref/settings/#media-root

Python Anti-Patterns

6.2.4 Same value for MEDIA_URL and STATIC_URL

According to Django’s documentation, MEDIA_URL and STATIC_URL must have different values.

Anti-pattern

MEDIA_URL and STATIC_URL point to the same URL.

""" settings.py """

Media and static root are identical
STATIC_URL = 'http://www.mysite.com/static'
MEDIA_URL = 'http://www.mysite.com/static'

Best practice

Ensure, STATIC_URL and MEDIA_URL point to different URL’s.

""" settings.py """

STATIC_URL = 'http://www.mysite.com/static'
MEDIA_URL = 'http://www.mysite.com/media'

References

• Django documentation - Settings: MEDIA_URL

• Django documentation - Settings: MEDIA_ROOT

6.3 Correctness

6.3.1 Not using forward slashes

Django requires you to use forward slashes / whenever you indicate a path, even on Windows. In your
settings, this is true for the following variables.

• STATICFILES_DIRS

• TEMPLATE_DIRS

• DATABASES['<your database>'][NAME]

• FIXTURE_DIRS

Anti-pattern

This pattern is exemplary for any of the above mentioned settings. It uses backslashes, instead of forward
slashes.

""" settings.py """

STATICFILES_DIRS = [
"\\path\\to\\my\\static\\files",

]

56 6. Django

https://docs.djangoproject.com/en/1.8/ref/settings/#media-url
https://docs.djangoproject.com/en/1.8/ref/settings/#media-root

Python Anti-Patterns

Best practice

Django requires you to use forward slashes /, even on Windows.

""" settings.py """

STATICFILES_DIRS = [
"/path/to/my/static/files",

]

References

• Django documentation - Settings: TEMPLATE_DIRS

• Django documentation - Settings: FIXTURE_DIRS

• Django documentation - Settings: STATIC_FILES_DIRS

• Django documentation - Settings: HOST

6.4 Performance

Django has a lot of mechanisms built-in to build fast and efficient web applications. Still, there are several
things to watch out for, especially when you start to scale your Django application. This chapter contains
anti-patterns that can potentially harm the performance of your application and hence, should be avoided.

6.4.1 Inefficient database queries

Django’s models make it easy for you, to filter the data of your application without using any SQL state-
ments. This is a great thing, however, it sometimes hides that you are using object filters inefficiently. Unless
you append .values() to your filter, your QuerySet will always query all columns within your database.
This can be uncritical until you scale your application or once your tables grow bigger. Therefore, make
sure you only retrieve the columns your really need within your program.

Anti-Pattern

Let’s assume we have a an app vehicle which contains a model Cars to store plenty of information about
a car:

""" models.py """

class Cars(models.Model):
make = models.CharField(max_length=50)
model = models.CharField(max_length=50)
wheels = models.CharField(max_length=2)
...

We import this model into one of your views to do something will make names within our database:

""" views.py """
from models import Cars

...

(continues on next page)

6. Django 57

https://docs.djangoproject.com/en/1.8/ref/settings/#template-dirs
https://docs.djangoproject.com/en/1.8/ref/settings/#fixture-dirs
https://docs.djangoproject.com/en/1.8/ref/settings/#https://docs.djangoproject.com/en/1.8/ref/settings/
https://docs.djangoproject.com/en/1.8/ref/settings/#host

Python Anti-Patterns

(continued from previous page)

cars = Cars.objects.all()
for car in cars:

do_something(car.make)

Even though this code works and looks harmless, it can kill you in production. You think, you are actually
just accessing the make field, but you are actually retrieving ALL data from your database, once you start
iterating over the retrieved QuerySet:

SELECT make, model, wheels, ... FROM vehicles_cars;

Especially, if you have many fields on your model and/or if you got millions of records in your table, this
slows down the response time of your applications significantly. As QuerySets are cached upon evaluation,
it will hit your database only once, but you’d better be carful.

Best practice

Use .values()

To avoid such a scenario, make sure you only query the data you really need for your program. Use .
values() to restrict the underlying SQL query to required fields only.

""" views.py """
from cars.models import Cars

cars = Cars.objects.all().values('make')

Print all makes
for car in cars:

do_something(car['make'])

SELECT make from vehicles_cars;

Use .values_list()

Alternatively, you can use .value_list(). It is similar to values() except that instead of returning
dictionaries, it returns tuples when you iterate over it.

""" views.py """
from cars.models import Cars

cars = Cars.objects.all().values_list('make', flat=True)

Print all makes
for make in cars:

do_something(make)

References

• Django documentation - Models: Querysets (values)

• Django documentation - Models: Querysets (values_list)

58 6. Django

https://docs.djangoproject.com/en/1.8/ref/models/querysets/#values
https://docs.djangoproject.com/en/1.8/ref/models/querysets/#values_list

Python Anti-Patterns

6.5 Migration to 1.8

Migrating to a new Django version can be time consuming. To make this process easier, this chapter lists
deprecated features and shows potential migration patterns/pathes.

6.5.1 TEMPLATE_DIRS deprecated

This setting is deprecated since Django version 1.8. Set the DIRS option of a [DjangoTemplates back-
end](https://docs.djangoproject.com/en/1.8/topics/templates/#module-django.template.backends.
django) instead.

Deprecated feature

Deprecated TEMPLATE_DIRS setting used.

""" settings.py """

TEMPLATE_DIRS = [
"path/to/my/templates",

]

Migration path

As of Django 1.8 you should set DIRS option within TEMPLATES setting. It defines where the engine should
look for template source files, in search order.

""" settings.py """

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'APP_DIRS': True,
'DIRS': '/path/to/my/templates',

},
]

References

• Django documentation - Settings: TEMPLATES

• Django documentation - Settings: TEMPLATE_DIRS

• Django documentation - Templates: Built-in backends

6. Django 59

https://docs.djangoproject.com/en/1.8/topics/templates/#module-django.template.backends.django
https://docs.djangoproject.com/en/1.8/topics/templates/#module-django.template.backends.django
https://docs.djangoproject.com/en/1.8/ref/settings/#templates
https://docs.djangoproject.com/en/1.8/ref/settings/#template-dirs
https://docs.djangoproject.com/en/1.8/topics/templates/#module-django.template.backends.django

Python Anti-Patterns

6.5.2 TEMPLATE_DEBUG deprecated

This setting sets the output that the template system should use for invalid (e.g. misspelled) variables.
The default value is an empty string ''. This setting is deprecated since Django version 1.8. Set the TEM-
PLATE_DEBUG option in the OPTIONS of a DjangoTemplates backend instead.

Deprecated feature

Deprecated TEMPLATE_DEBUG setting used.

""" settings.py """

TEMPLATE_DEBUG = True

Migration path

As of Django 1.8 you should set debug option in the OPTIONS of a DjangoTemplates backend instead.

""" settings.py """

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'APP_DIRS': True,
'DIRS': '/path/to/my/templates',
'OPTIONS': {

'debug': True,
}

},
]

References

• Django documentation - Settings: TEMPLATE_DEBUG

• Django documentation - Settings: TEMPLATES

• Django documentation - Templates: Built-in backends

6.5.3 TEMPLATE_LOADERS deprecated

This setting is deprecated since Django version 1.8. Set the LOADERS option of a DjangoTemplates backend
instead.

Deprecated feature

Deprecated TEMPLATE_LOADERS setting used.

""" settings.py """

TEMPLATE_LOADERS = (
'django.template.loaders.filesystem.Loader',

(continues on next page)

60 6. Django

https://docs.djangoproject.com/en/1.8/ref/settings/#template-debug
https://docs.djangoproject.com/en/1.8/ref/settings/#templates
https://docs.djangoproject.com/en/1.8/topics/templates/#module-django.template.backends.django
https://docs.djangoproject.com/en/1.8/topics/templates/#module-django.templatebackends.django

Python Anti-Patterns

(continued from previous page)

'django.template.loaders.app_directories.Loader',
)

Migration path

As of Django 1.8 you should set loaders option in the TEMPLATES setting. It defines where the engine
should look for template source files, in search order.

""" settings.py """

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'APP_DIRS': True,
'DIRS': '/path/to/my/templates',
'OPTIONS': {

'loaders': (
'django.template.loaders.filesystem.Loader',
'django.template.loaders.app_directories.Loader',

),
}

},
]

References

• Django documentation - Settings: TEMPLATES]

• Django documentation - Settings: TEMPLATE_DIRS]

• Django documentation - Templates: Built-in backends]

6.5.4 TEMPLATE_STRING_IF_INVALID deprecated

This setting sets the output that the template system should use for invalid (e.g. misspelled) variables.
The default value is an empty string ''. This setting is deprecated since Django version 1.8. Set the
string_if_invalid option in the OPTIONS of a DjangoTemplates backend instead.

Deprecated feature

Deprecated TEMPLATE_STRING_IF_INVALID setting used.

""" settings.py """

TEMPLATE_STRING_IF_INVALID = 'Invalid variable'

Migration path

As of Django 1.8 you should set string_if_invalid option in the OPTIONS of a DjangoTemplates
backend instead.

6. Django 61

https://docs.djangoproject.com/en/1.8/ref/settings/#templates
https://docs.djangoproject.com/en/1.8/ref/settings/#template-loaders
https://docs.djangoproject.com/en/1.8/topics/templates/#module-django.template.backends.django

Python Anti-Patterns

""" settings.py """

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'APP_DIRS': True,
'DIRS': '/path/to/my/templates',
'OPTIONS': {

'string_if_invalid': 'Invalid varialbe!',
}

},
]

References

• Django documentation - Settings: TEMPLATES

• Django documentation - Settings: TEMPLATE_STRING_IF_INVALID

• Django documentation - Templates: Built-in backends

• Django documentation - Templates: How invalid variables are handled

62 6. Django

https://docs.djangoproject.com/en/1.8/ref/settings/#templates
https://docs.djangoproject.com/en/1.8/ref/settings/#template-string-if-invalid
https://docs.djangoproject.com/en/1.8/topics/templates/#module-django.template.backends.django
https://docs.djangoproject.com/en/1.8/ref/templates/api/#how-invalid-variables-are-handled

	Why did we write this?
	Who are we?
	How is this book organized?
	References
	Licensing
	Contributing
	List of Maintainers
	Index Of Patterns
	 Correctness
	Accessing a protected member from outside the class
	Assigning a lambda expression to a variable
	Assigning to built-in function
	Bad except clauses order
	Bad first argument given to super()
	else clause on loop without a break statement
	__exit__ must accept 3 arguments: type, value, traceback
	Explicit return in __init__
	__future__ import is not the first non-docstring statement
	Implementing Java-style getters and setters
	Indentation contains mixed spaces and tabs
	Indentation contains tabs
	Method could be a function
	Method has no argument
	Missing argument to super()
	Using a mutable default value as an argument
	No exception type(s) specified
	Not using defaultdict()
	Not using else where appropriate in a loop
	Not using explicit unpacking
	Not using get() to return a default value from a dict
	Not using setdefault() to initialize a dictionary

	 Maintainability
	using wildcard imports (from … import *)
	Not using with to open files
	Returning more than one variable type from function call
	Using the global statement
	Using single letter to name your variables
	Dynamically creating variable/method/function names

	 Readability
	Asking for permission instead of forgiveness
	Comparing things to None the wrong way
	Comparing things to True the wrong way
	Using type() to compare types
	Not using dict comprehensions
	Not using dict keys when formatting strings
	Not using items() to iterate over a dictionary
	Not using named tuples when returning more than one value from a function
	Not using unpacking for updating multiple values at once
	Not using zip() to iterate over a pair of lists
	Putting type information in a variable name
	Test for object identity should be is
	Using an unpythonic loop
	Using map() or filter() where list comprehension is possible
	Using CamelCase in function names

	 Security
	use of exec

	 Performance
	Using key in list to check if key is contained in list
	Not using iteritems() to iterate over a large dictionary in Python 2

	 Django
	 Maintainability
	 Security
	 Correctness
	 Performance
	 Migration to 1.8

